Exercise 1. Are the following functions linear? (Remember, \(f \) is linear if i) for all pairs of vectors \(u, v \), we have \(f(u + v) = f(u) + f(v) \), and ii) for every vector \(v \) and scalar \(c \), \(f(cv) = cf(v) \).

\(a) \) \(f(x) = 3x \), \(b) \) \(g(x) = 2x - 3 \), \(c) \) \(h(x) = x^2 \), \(d) \) \(k(x, y) = x + y \),

\(e) \) \(l(x, y) = (x + y, x - y) \), \(f) \) \(m(x, y) = (x, 1) \), \(g) \) \(n(x, y) = (0, y) \).

Exercise 2. Is it true that a linear transformation \(f \) always fixes the origin, i.e., \(f(0) = 0 \)?

Exercise 3. The goal of this exercise is getting an intuition about the geometric meaning of linear transformations and how matrices describe them. Go to the website “Linear Transformation in 2 dimensions” (http://mathinsight.org/applet/linear_transformation_2d) where you will find the applet we were playing around with in the end of the class. Try out the following input matrices and inspect the results. Make a guess of what will happen, before you actually specify the matrix in the applet.

\(a) \) \[
\begin{bmatrix}
0 & 1 \\
1 & 0 \\
\end{bmatrix}
\]
\(b) \) \[
\begin{bmatrix}
2 & 0 \\
0 & 1 \\
\end{bmatrix}
\]
\(c) \) \[
\begin{bmatrix}
0 & -1 \\
1 & 0 \\
\end{bmatrix}
\]
\(d) \) \[
\begin{bmatrix}
1 & -1 \\
1 & 1 \\
\end{bmatrix}
\]
\(e) \) your favorite matrix.

Exercise 4. (Bonus.) Recall the following exercise form the 5th Exercise Set.

The matrix \[
\begin{bmatrix}
7 & -1 \\
-2 & 8 \\
\end{bmatrix}
\]
describes a linear transformation \(f : \mathbb{R}^2 \to \mathbb{R}^2 \) in the standard basis of \(\mathbb{R}^2 \).

Let \(b_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \) and \(b_2 = \begin{bmatrix} -1 \\ 2 \end{bmatrix} \) be two vectors.

\(a) \) Compute the coordinate vectors of \(f(b_1) \) and \(f(b_2) \).

\(b) \) What is the matrix of \(f \) in the basis \(b = \{b_1, b_2\} \)?

Explore this problem via the applet from Exercise 3. (It is much more convenient to download the applet file from the website and opening it in GeoGebra (https://www.geogebra.org), than using the embedded applet in the browser.)

- Set \(A \) to be \[
\begin{bmatrix}
7 & -1 \\
-2 & 8 \\
\end{bmatrix}
\]

- On the left part of the screen, place the yellow, blue, and red corners of your square to \((1, 1)\), \((0, 3)\), and \((-1, 2)\), respectively. (Leave the green one in the origin.)

- What do you observe on the output field on the right-hand side?